

II Semester M.Sc. Examination, June/July 2015 (CBCS) MATHEMATICS

208 SC: Mathematical Modelling and Numerical Analysis - I

Time: 3 Hours Max. M			arks: 70	
		Instructions : Answer any five full questions. All questions carry equal marks.		
15 -	a)	Using a block diagram explain in detail the steps involved in mathematical modeling of a system.	6	
	b)	Show that the spring-mass-dashpot system and the LCR circuit are governed by the same differential equations with coefficients being different.	8	
2	a)	Derive the one-dimensional wave equation for vibrations of a string without damping.	6	
	b)	Explain the connection between parabolic and hyperbolic equations and the elliptic equation. Further, explain in general terms the nature of the problem and solution of these equations.	8	
3.	a)	Show that the fixed point iterative method has linear convergence. Explain the Aitken Δ^2 -process of accelerating the convergence of the linear iterative method.	7	
	b)	Elaborate on the Sturm sequence method to identity the number of real roots of the algebraic equation $f(x)=0$.	7	
4	a)	Prove or disprove that the Newton-Raphson method for finding a simple root of $f(x) = 0$ has quadratic convergence.	7	
	5)	Find an estimate of the small real root of $sinx = 1 - x$ by Ramanujan's method.	7	
5.	a)	Explain partial and complete pivoting strategies. Solve the system using the Gauss elimination method.		
	100	$x_1 + x_2 + x_3 = 6$; $3x_1 + 3x_2 + 4x_3 = 20$; $2x_1 + x_2 + 3x_3 = 13$. Solve using the Doolittle method :	8	
		$2x_1 - x_2 + x_3 = -1$; $3x_1 + 3x_2 + 9x_3 = 0$; $3x_1 + 3x_2 + 5x_3 = 4$.	6	

6. a) Develop the Thomas algorithm to solve an (π×n) tridiagonal system of

b) Solve using the Newton-Raphson method y cos(xy) + 1 = 0;

5

9

 $\sin(xy) + x - y = 0$. $(x_0, y_0) = (1, 2)$. (Perform one iteration). 7. a) Derive Hermite interpolation formula for the given data

 $\{x_i, f(x_i), f^1(x_i), i = 0, 1, 2, ..., n\}$

- 5
- b) Show that the Lagrange interpolating polynomial is unique and also find the truncation error involved in Lagrange interpolation.
- 5
- c) Obtain the rational approximation of the form $\frac{a_0 a_1 x}{1 + b_1 x}$ to e^x .
- 4
- 8: a) Establish Gauss-Legendre three point quadrature formula and hence evaluate

$$\int_{1}^{1} (1-x^2)^{\frac{3}{2}} \cos x \, dx$$

- S
- b) Evaluate ∫ √1-x² cos x dx using Gauss-Chebyshev two and three points formulas.
- 6